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Experiments have been performed, in capillary tubes, on the displacement of a viscous 
fluid (glycerine) by a less viscous one (a glycerine-water mixture) with which it is 
miscible in all proportions. A diagnostic measure of the amount of viscous fluid left 
behind on the tube wall has been found, for both vertical and horizontal tubes, as a 
function of the Peclet ( P e )  and Atwood (At )  numbers, as well as a parameter that is a 
measure of the relative importance of viscous and gravitational effects. The asymptotic 
value of this diagnostic quantity, for large Pr and an At of unity, has been found to 
agree with that found in immiscible displacements, while the agreement with the 
numerical results of Part 2 (Chen & Meiburg 1966), over the whole range of At, is very 
good. At  values of the average Pe greater than 1000 a sharp interface existed so that 
i t  was possible to make direct comparisons between the present results and a prior 
experiment with immiscible fluids, in particular an effective surface tension at the 
diffusing interface could be evaluated. The effect of gravity on the amount of viscous 
fluid left on the tube wall has been investigated also, and compared with the results of 
Part 2. A subsidiary experiment has been performed to measure both the average value 
of the diffusion coefficient between pure glycerine and several glycerine-water 
mixtures, in order to be able to  calculate a representative Peclet number for each 
experiment, and the local value as a function of the local concentration of glycerine, 
in the dilute limit. 

1. Introduction 
An improved understanding of the dynamics of multiphase porous media flows 

remains an essential prerequisite for progress in the fields of enhanced oil recovery, 
fixed bed regeneration, hydrology, and filtration. From basic stability theory (Chouke, 
van Meurs & van der Pol 1959; Saffman & Taylor 1958) we know that if the displacing 
fluid is less viscous than the displaced fluid, the unfavourable mobility profile will lead 
to the well-known fingering instability, which causes the displacing fluid to channel 
through the displaced zone, thereby reducing the efficiency of the displacement process. 
If the fluids are of different densities, gravity can exert an additional stabilizing or 
destabilizing influence. Reviews on this topic are given by Homsy (1987), Saffman 
(1 986) and Bensimon et al. (1986). Depending on whether the two fluids are immiscible 
or miscible, one can distinguish two apparently different problems. In the immiscible 
case, where the surface tension acts at the interface between the two fluids, the capillary 
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number, which is a measure of the ratio of viscous to surface tension forces, represents 
a dynamically important parameter. It determines the most unstable wavelength of the 
fingering instability as well as the dynamics of the evolving fingers, e.g. Maxworthy 
(1989), Meiburg & Homsy (1988). 

For miscible displacements, however, it is conventionally assumed that the dynamics 
are determined by the relative importance of convective and diffusive effects but, in 
general, the proper form of the diffusion tensor to be used within the mixing region in 
theoretical/analytical studies is not known. Past investigations have employed rather 
ad hoc approaches that have been developed without the advantage of comparison with 
rigorous, experimental or numerical studies. The simplest assumption, that of isotropic 
diffusion of the two phases, certainly cannot describe the reality of flow in a porous 
medium nor in a depth-averaged Hele-Shaw flow. Tan & Homsy (1986), Yortsos & 
Zeybek (1988), Brady & Koch (1988) as well as Zimmermann & Homsy (1991) have 
taken the first steps towards a more realistic approach by assuming a variety of 
conditions based on various forms of the diffusion tensor at the interface, e.g. isotropic 
or anisotropic diffusion that may or may not depend on the velocity field there. In the 
stability analyses it is assumed that the basic density and viscosity profiles change more 
slowly than the rate at which the instability grows, and all give growth rates and 
interface shapes that can, in principle, be checked against experiments. Another 
approach to the stability problem based on the idea of an effective surface tension has 
been presented by Hu & Joseph (1991), also under the rather restrictive assumption 
that the species concentration can be averaged over the cross-section of the gap. 
Further, Joseph (1990) has considered a number of experiments in which a bubble or 
drop of one fluid moved through another fluid with which it was miscible in all 
proportions. We note for future reference that such observations cannot represent a 
steady-state situation since interior fluid is continually being removed at the interface 
and deposited into a wake. Joseph made the interesting point that the form of these 
bubbles is similar to those found in immiscible fluids with a large surface tension. While 
it is possible to make such qualitative comparisons very easily it is far harder to make 
them quantitative in such a complex free-boundary flow with many parameters. In the 
present work a simpler geometry is considered from which quantitative results can be 
obtained. Also, in his recent work, Joseph pointed out that in the diffusion region 
between two incompressible flows, the assumption of a divergence-free mass-averaged 
velocity fields may not always be a good approximation, even if the volumes of the 
fluids so not change. Consequently, this effect plus additional stress terms (the so-called 
Korteweg stresses (Korteweg 1901)) might play a role in the diffusing region, which can 
mimic the effect of an interfacial tension even in miscible displacement processes. 
Values of ‘effective’ surface tension, veff, in the range of 1 to lop4 dyn cm-l have been 
suggested. 

In the present work in order to simplify the interpretation of the experiments we have 
considered mainly flow in basic geometries, e.g. those between closely spaced parallel 
plates (a Hele-Shaw cell) or within capillary tubes. The former is usually considered as 
a limiting model for two-dimensional motion in an extended porous medium (e.g. 
Homsy 1987), while the latter could be considered as the simplest model of 
displacement in a single pore of such a medium. It is this pore model that we consider 
here with the former the subject of a future publication. We believe that this geometry 
has allowed us to perform a series of ‘clean’ experiments in order to be in a better 
position to unravel some of the basic effects under consideration for a miscible 
interface, and how they might be related to our more complete understanding of the 
boundary conditions in immiscible fluid displacement and instability. 
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FIGURE I .  Schematic of miscible displacement in a capillary tube, showing the definition of y ,  V,, 
V,,L,,,, t and 6, together with the velocity profiles within and upstream of the intruding finger. 

In the immiscible case the seminal study of Taylor (1961) and the related numerical 
calculations of Reinelt & Saffman (1985) are the publications with which our results are 
to be compared. Taylor measured the amount of fluid displaced by injecting air into 
a horizontal capillary tube, initially filled by a viscous fluid, in order to calculate the 
mean velocity (V,) of the Poiseulle flow ahead of the intruding finger. By 
simultaneously measuring the velocity of the tip (5 )  of the intruding air column he was 
able to calculate a quantity (m) that was related to the amount of displaced fluid that 
remained on the wall, i.e. m = V,/ VT = 1 - ( yn/  V,), which, in turn, was related to the 
thickness ( t )  of the annular fluid layer left behind on the tube wall, i.e. 
m = 1 - (1  - (2t/d)) ';  here V, is the volume of more-viscous fluid left on the tube wall 
over a length, L, VT is the total volume of the tube over the same length and d is the 
tube diameter (figure 1). Note that as 2t/d-+O, n z i  0 and as 2t/d-+ 1, m i  1, but the 
transformation from 2t/d to nz has had the effect of expanding the numerical range of 
m for the values o f t  of interest. The velocity profile in the tube was a 'double Poiseuille 
profile ' connected through velocity and stress continuity conditions on the interface 
between the two fluids, as represented in figure 1. However, in Taylor's experiment the 
flow in the interior of the finger was dynamically unimportant because of the large 
viscosity ratios used. Ahead of the finger, the velocity profile was a Poiseuille profile 
with V,,, the means velocity and V,nu, = 2V, the maximum velocity at the centre of the 
tube. 

Upon plotting m us. Cu = 6,uq/cr Taylor found a single curve for a number of fluids 
that increased from the origin as Cul'', for small Cu, and that reached a value of 0.56 
for moderately large Ca. Here ,u2 is the dynamic viscosity of the displaced fluid and r 
the surface tension between it and the displacing air. In a later experiment Cox (1962) 
extended the range of Cu and found an apparent asymptotic of 0.60 at large Cu. 
Numerical calculations by Reinelt & Saffman (1985), using the Stokes equations, 
agreed very closely with these experiments. Unfortunately no experiments have been 
run for viscosity ratios of the two fluids (j~J,u~) other than the large values used by 
Taylor. 

In the present work we have performed a version of Taylor's (1961) experiment in 
capillary tubes but using miscible fluids, glycerine and glycerine-water mixtures, in 
order to investigate a range of problems. The Atwood number Ar = (p2-,u1)/(,u2+,u1) 
was allowed to range over values from 0 to 1 so that, in general, the flow in the interior 
of the finger could no longer be ignored. The form of the m z's. Pe curve was of especial 
interest as was the effect of varying A t .  Here Pe = V,,, d / D  is the Peclet number, and 
is the appropriate non-dimensional parameter to describe the flow, and D is the 
'average' diffusion coefficient between the two liquids (see $2.2). We have also 
measured the asymptotic value of m for high Pe, as a function of A t ,  and discuss the 
effects of gravity on the evolution of the instability. Further, we use this measurement 



40 P. Petitjeans and T. Maxworthy 

of the amount of fluid displaced, or alternatively the film thickness left on the tube wall, 
to determine an ‘effective’ surface tension and capillary number for the case A t  = 1, 
by directly comparing the present results with those of Taylor (1961). 

The companion paper to this one (Chen & Meiburg 1996, hereafter referred to as 
Part 2), on the numerical calculation of miscible displacement in a capillary tube, 
should be considered as an integral part of the present paper. As will be seen, during 
the course of this work a great deal of interplay took place between the two efforts; the 
resulting interpretations rely heavily on this interaction. 

2. Experimental arrangement and procedure 
2.1. Experiments on miscible displacements in capillary tubes 

A slightly modified version of Taylor’s experimental set-up has been built (figure 2). 
The system consisted of a precision-bore glass tube with nominal inner diameter 
d = 1,2,3 or 4 mm, and a length of 1 m. The tube was mounted inside a square tube 
of 1 cm2 section, and the region between the two tubes was filled with a glycerine-water 
mixture with the same refractive index as that of the glass, to allow an undistorted view 
of the flow inside the small cylindrical tube. Each end of the tube was connected to a 
constant-pressure tank, one filled with reagent grade glycerine, with a purity of 99.3 YO 
and a dynamic viscosity of ,u2 = 1020 CP at 22.5 “C, and one filled with a 
glycerine-water mixture (with a concentration, by weight, of glycerine between 0 and 
99.3%) so that p1 varies between 1 and 1020 cP. The tube was first filled with glycerine 
(p2), then, by suitable manipulation of the valves, a glycerine-water mixture &,) was 
forced into the tube displacing some of the glycerine. The displaced glycerine was 
collected in a receptacle placed on an electronic balance and weighted to an accuracy 
of 0.1 mg. From this measurement, and knowing the density of glycerine, we could 
deduce the volume of mixture injected in a given time. The mixture was coloured with 
blue food dye so that the interface could be observed through a low-powered 
microscope mounted onto an electronic ruler, thus giving the position of the interface 
to an accuracy of & 0.5 mm. Values of the diffusion coefficient of the dye in water were 
of the order of cmz SKI, which is comparable to that of the glycerine side of the 
interface (see $92.2 figure 5) ,  and therefore we anticipate that it will track this interface 
closely. When the dyed nose of the glycerine-water mixture had travelled a known 
distance, usually L = 10 cm, the amount of mixture that had entered the tube was 
measured, as outlined above, as was the time taken for the displacement. From this the 
average velocity, V,, of the front was calculated as well as the average velocity, V,, in 
the Poiseuille flow ahead of the finger. Owing to the experimental procedure adopted 
to generate the displacement, the velocity of the front was not constant during any one 
experiment. This was due to the fact that with a fixed pressure difference between the 
two ends of the tube the varying effective viscosity of the fluid in the tube gave rise to 
a slightly accelerating flow. For this reason we chose the distance L small enough 
(10 cm) so that this change in velocity was small. Finally, as explained before, the 
diagnostic quantity m = 1 - V,/ 6 was calculated. The experiment was then repeated 
for many values of the front velocity V, and Atwood number so that graphs of m versus 
Pe at constant initial At could be constructed. In addition, similar experiments were 
performed in tubes of different diameters placed vertically, with either the glycerine or 
mixture as the lower fluid, or horizontally, in order to observe the effects of gravity on 
the form of the curves of m us. Pe as well as on the interface shape. 
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FIGURE 2. Apparatus. The capillary tube i s  enclosed in a square glass tube filled with refractive-index- 
matching fluid. The manifolds at each end are used to manipulate the glycerine and glycerine-water 
mixture as needed. The electronic balance is used to weight the amount of glycerine displaced by the 
intruding finger of mixture. 
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FIGURE 3 .  Sketch of the apparatus used to measure the diffusion coefficient between glycerine and a 
known glycerine-water mixture. 

2.2. Measurement of the dijiision coeficient, D 
In order to calculate the Peclet number the diffusion coefficient D between glycerine 
and a known glycerine-water mixture was needed. Despite an exhaustive search of the 
literature we were unable to find values on which we felt we could rely. Therefore, it 
was decided to measure this coefficient in a separate experiment. 

We assume that the one-dimensional equation of molecular diffusion describes the 
processes of interest, an assumption that is discussed in some detail in Part 2, and need 
not be repeated here. Here the ‘average’ diffusion coefficient, D(C,) (where C, is the 
percentage of glycerine by weight), for a number of fluid pairs was measured with the 
optical refraction method sketched in figure 3 ,  while its local value, D,(C,), in the 
dilute limit, was calculated from the results of the present experiments, using a 
modification of the technique used in Part 2 (95). In this former method a focused laser 
beam was passed through a quartz cell that has been earlier partially filled with 
glycerine, on top of which was slowly added a similar amount of a known 
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FIGURE 4. (a)  Laser beam deflection as a function of its input or x-position, for the case where the 
diffusing mixture contains 25% glycerine by weight. This signal is proportional to the gradient of 
concentration (dC,/dx). The times are shown on the figure. (b) The curves of dC,/dx, in (a), have 
been integrated to show how C, varies with x, for the same times as (a) .  In (a) and (b) the movement 
of the maximum of dC,/dx is apparent, as is the very asymmetric form of the profiles. This latter 
point is emphasized in the inset figure which shows the profiles in a frame of reference fixed to the 
maximum of dC,/dx. The thickness of the diffused layer (8) is defined as shown, i.e. to the (1 - l/e) 
locations on either side of the point of maximum slope. 

glycerine-water mixture. The beam was bent vertically when it crossed a vertical 
gradient of concentration and this deviation was measured as a function of position 
within the interface with a light detector. The deflexion angle, a, is given by the 
geometrical optical rule : 

n 1 an 
n, nax  

where n (with respect to the value (n,) for air) is the index of refraction of the fluid, and 

a =-1 --dz, 
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FIGURE 5.  The 'average' diffusion coefficient between glycerine and a glycerine-water mixture, of a 
glycerine concentration by weight C,,. Also plotted are the values of the pointwise value of the 
diffusion coefficient, D,, found by assuming that D and D,, must coincide at Cy = 100% and that D, 
is a linear function of C,, as established in Part 2. 

z is in the direction of the undisturbed laser beam. Figure 4(a) represents the deviation 
of the laser beam versus position for different times after the formation of the interface. 
The maxima of the curves correspond to the position where the gradient of 
concentration is a maximum. An integration of these profiles gives curves (figure 4b)  
proportional to the concentration. Two points should be noted. (i) Unlike the profiles 
for a case with constant D,,, the curves of C, rs. .Y show a movement of the point at 
which d2C,/dx2 = 0 towards the glycerine side of the interface. (ii) The curves are very 
asymmetric with a broad variation in C, on the 'mixture' side and a sharp variation, 
almost a discontinuity, on the glycerine side. The suggestion that these effects are due 
to a large variation of D,, with C,, for the glycerine-water system used here, is borne 
out by the calculations in Part 2 and those presented below. However, for our present 
purposes, to calculate Pr, it is the single value of D that is representative of the diffusion 
of the whole interface that is needed. From curves like those shown in figure 4(h) such 
an averaged or overall diffusion coefficient can be deduced, as function of the initial 
concentration of the mixture, by defining the width, 8, to the 1 - l /e  points of the 
profiles, on either side of the point with the maximum slope. Then, in analogy with the 
similar analysis of the symmetric error-function profile, D = s"/6.35r, where t is the 
time since the interface was formed. The resultant value of D (figure 5 )  is then that 
uiwagecl', for each particulur mi.vture interdiflusing kvith pure glycerine, and is given by 
the equation D = 1.60 x ( I  -8.95 x lo-" C,) cm2 s-I, with a correlation coefficient 
of 0.83. D is not the same as the pointwise value, D,(C,), calculated below, which is 
also plotted on the figure. Finally the Peclet number, Pe, is calculated with this 
averaged diffusion coefficient. 

In order to calculate DI,(C,) note, first, that i t  and the average D must be the same 
as a C', of loo%, i.e. both represent the interdiffusion of glycerine plus an infinitesimal 
amount of water in pure glycerine. A value of 1.68 x lo-' cm2 SC' is suggested by 
extrapolation of the present data. Secondly, from Part 2,45, it was found that a linear 
variation of D,, with C, is consistent with the measured velocity (v,) of the point of 
maximum slope (dC,/dx),,,,. In what follows a value of Vs/(dC,/dx)mu2: of 4.25 x 
lop6 cm' s-' was used which, together with the value of D at C, = loo%, gives the 
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curve shown on figure 5 ,  the equation for which is D, = 4.43 x C,) 
cm2 s-l. In the limit C, = 0, DL(0) represents the interdiffusion of water and water plus an 
infinitesimal amount of glycerine, the dilute limit, while D measures the interdiffusion 

(1 - 9.62 x 
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Concentration 
of the mixture 

( % ) At p,(cP) p,(g cm-:') D(cm's-') 

100 0 1020 1.26 1.68 x lo-' 

86. I35 0.79 98.5 1.23 3.62 x lo-' 
55.69 0.985 7.5 1.13 8.02 x lo-' 

94.41 0.43 352 1.25 2.4s x 10-7 

0 1 1 I I .60 x 

TABLE 1. Some physical parameters for the experiments 

of pure water with pure glycerine at an interface that covers the whole range of C, from 
0 to 1 (100%). Values of DL(Cg) in this limit can be found in the literature but the 
results are widely scattered from 1 . I  x 10-' to 3.5 x cm2 s-'. The present value of 
4.43 x lop6 cm2 s-' is that which results from an analysis of all of the experiments run 
here and is consistent with these previous measurements. Also the ratio of 
D,(O %)/D,(100 YO), from figure 5 ,  is 26.5, which is to be compared with a value of 40 
found in Part 2, using a slightly different criterion to evaluate this quantity. 

The reason for the difference between D and D,, is now clear from a study of the 
experimental data. The large variation of D,, with C, makes the profile asymmetric, 
with very slow diffusion on the glycerine side of the interface. For example, at 
C,, = 25 YO, S is smaller by about a factor of I .6 from the value it would have in the 
equivalent symmetric error-function profile, for diffusion in the dilute limit with 
constant D , .  Thus s" is smaller by a factor of around 2.6, a fact reflected in the smaller 
value of D for the mixture/glycerine case. 

One interesting consequence of this analysis is that in order to assure dynamic 
similarity between different systems not only must the geometry, Pe and A t  be the same 
but, also, the dimensionless variation of ,ul and D,(C,) must have the same form. 

During the experiments on the viscous displacement, to be described later, the 
'fresh' mixture and glycerine are being convected into the region of the nose due to the 
flow pattern that is set-up in its neighbourhood (see $ 3 ) .  Because of this, it is 
reasonable to keep the same initial D in the definition of Pr for a given experiment, at 
least until diffusion at the lateral sides of the finger fills the tube with a mixture that 
has a radically different concentration from that set initially. 

3. Results and discussion 
A large number of experiments have been performed to measure m as function of the 

different parameters: the Atwood number A t ,  the tip velocity 6, the diameter d of the 
tubes, and the orientation of the tube, in order to take into account the effect of gravity. 
When the tube was oriented vertically clearly two possibilities existed : when the heavier 
fluid (glycerine. p2 = 1.26 g c ~ i i - ~ )  was on top, gravity tended to destabilize the flow. 
Alternatively, when the lighter fluid (a mixture of glycerine-water, p1 between 1 and 
1.26 g cm-", depending on the concentration of glycerine) was on the top, gravity 
stabilized the flow. The relevant parameter is F = g [(p, - p 2 ) / p 2 ]  d 2 / v 2  Vmaz, which 
compares gravitational to viscous effects; cf. the rise of a bubble in a viscous fluid 
(Clift. Grace & Weber 1978, p. 3 3 . ) .  Here v2 is the kinematic viscosity of the more- 
viscous fluid. As a result, F is positive in the destabilized case (the heaviest fluids is on 
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FIGURE 7. (a) A cross-plot of the data of figure 6(a )  at At = 0.985 showing m us. F for the various 
values of Pe indicated on the figure. Data from Part 2 at Pe = 1600 are shown also. (b, c) The same 
as 7 ( a )  but for A t  = 0.43 and 0.79 respectively. In (c) the dotted curve indicates that the interpolation 
is uncertain, since no intermediate points were measured. 

the top), and negative in the stabilized case, while F = 0 when the tube is horizontal. 
As will be seen this does not mean that gravitational effects are negligible in this latter 
case, for the finger becomes distorted as it tries to rise within the narrow confines of 
the tube cross-section. We are only able to infer the symmetric finger behaviour, at 
F = 0, by interpolating within the results for the vertical intrusions for F greater and 
less than zero. For the same two fluids a wide range of F could be covered since 
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experiments were performed with tubes of 1 ,  2, 3 and 4 mm, diameter, as well as an 
extensive range of q. 

Figure 6(a) gives the curves of the raw data of m as a function of Pe for tubes of 
different diameters, oriented vertically and horizontally, and for At = 0.985. In these 
experiments, the average velocity of the nose V, varied between 0.2 and 20 mm s-’. It 
was extremely difficult to operate at slower velocities, typically values of Pe below 1000, 
since diffusion had time to make the tip of the nose difficult to detect with the 
microscope (see later). 

It is clear from these curves that gravity had a strong effect on the behaviour of the 
intruding finger. For large Pe all the curves tend to the same value of m, which depends 
only on At,  as we will show later. For small Pe, the behaviour of m depends strongly 
on tube diameter and orientation, i.e. on F. When F > 0, m increases as Pe decreases 
which is opposite to the trend found for the case when F < 0, or even for the horizontal 
tube. Figures 6 ( h )  and 6(c) give curves for values of At of 0.43 and 0.79, while table 
1 gives some physical values for these experiments. 

In order to quantify the effect of the gravity, in figure 7(a) a cross-plot of m as a 
function of F for different Pe and At = 0.985 is shown. Figures 7(b) and 7(c) give the 
equivalent curves for A t  = 0.43 and A t  = 0.79. For At = 0.985 and 0.79, the results 
obtained in Part 2, in the numerical simulations for the same values of At and 
Pr = 1600, have been superimposed. The main points to note from all of these results 
is that while the calculations in Part 2 have reached the asymptotic value of m at 
Pe = 1600, this limit is not reached in the experiments until much larger values, 
typically of order 10000 for the smallest tube diameter ( 1  mm). Also, in the 
experiments, because of the very sniall values of D that result from the use of the 
glycerine-water system, it was not possible to operate in the Taylor dispersion limit 
discussed in Part 2, $4.2. 

The difference of behaviour for the different signs of F can be explained by reference 
to the sketches of figure 8. These represent the forces induced by gravity which change 
the profile of the finger and the thickness of the layer of displaced fluid left behind the 
advancing nose. In the gravitationally unstable case ( F  > O), where the heavier fluid is 
placed on the top of the lighter one, the glycerine has a tendency to penetrate 
downwards along the wall of the tube, increasing the thickness of the glycerine layer 
around the finger, so that n7 increases. In the opposite gravitationally stable case 
( F  < 0), where the heavier fluid is placed under the lightest one, glycerine tends to leave 
the wall layer. thus decreasing the thickness of this layer, so that n7 decreases also. In 
the horizontal case, gravity tends to move the main body of the lighter finger towards 
the upper part of the tube, even as the flow tried to enforce symmetry at the tip of the 
nose. In that case, the axisymmetry is affected, and its seems that the average amount 
n7 of glycerine remaining on the wall is also modified for the larger tube diameters (see 
later). From the curves of figure 7, it is now possible to redraw, by interpolation or 
extrapolation, the evolution of n? as a function of Pe for F = 0. Figure 9(u) gives such 
a result, for an Ar of 0.785, where the measurements obtained with the tube of 1 mm 
of inner diameter have been superimposed. Note that in this comparison the results are 
not significantly different and within experimental error. Figure 9(b) gives the 
corresponding curve for an A t  of 0.43, while the curve for A t  = 0.79 is included in 
figure 6(c). 

In addition, for tubes of 3 and 4 m m  inner diameter placed horizontally, a 
gravitational instability may appear which cuts the finger into two longitudinal parts, 
as shown in figure 10. This is a miscible version of the Rayleigh-Taylor instability. 
Kurowski & Misbah ( 1  994) have studied the dispersion relation for the gravitational 
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FIGURE 8. Sketches and photographs of the finger shapes for F > 0, F < 0 and F = 0 (a horizontal 
tube). The arrows on the sketches indicate the direction of gravity forces tending to the narrow the 
finger for F > 0 and widen it for F < 0. In all cases the hatched region represents the glycerine-water 
mixture. 
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FIGURE 11. (a) A photograph and a sketch (modified from that in Taylor 1961) of the finger shape 
and steady streamlines, in a reference frame fixed to the fingertip, for m > 0.5. (b) The same as (a) 
but for m < 0.5. In the photographs shown here a thin spike grows continuously from the tip as a 
result of the recirculating flow field set-up in its neighbourhood. The hypothetical steady streamlines 
for this case are indicated in the sketch, which is a slightly modified version of that shown in Taylor 
(1961). In this instance, for simplicity, the unsteady growth of the spike is not taken into account in 
drawing the 'steady' streamlines. (c) A sketch of the unsteady streamlines associated with the growth 
of a spike at the nose of the finger, in a frame of reference moving with the nose not the tip of the 
spike! This is to be compared with similar sketches in Part 2, based on calculations. 
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FIGURE 8. For caption see facing page. 
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FIGURE 11. For caption see facing page. 
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FIGURE 9. ( a )  The solid line shows rn versus Pe, for vertical tubes interpolated to F = 0. The crosses 
are for rn us. Pe for F < 0 and a 1 mm tube. A t  = 0.985. (6 )  The same as (a)  but for At = 0.43. The 
sign of F is as shown. 

instability between two miscible fluids in an infinite medium and found equations for 
the characteristic wavenumber, k ,  and time, t ,  of growth of the instability given by 

k = 2 ~ / h  = [3g'/16vz D]1'3 
and t = [ V , / ~ ' D ' ~ ~ ] ~ ~ ~ ;  
where g' = gAp/p,  is the relative difference of buoyancy, and h is the wavelength. 
Using these relations we obtain, in the case of figure 10, whereg' M 8.5 cm s-', t = 100 s 
and h z 0.1 cm, values that are superficially compatible with our observations despite 
the fact that we are dealing with a finite medium in a tube. In a crude way these results 
might explain why we have not seen this gravitational instability in the smaller tubes : 
the wavelength is larger than the diameter of the finger. However, for a larger difference 
in buoyancy, the theoretical wavelength is much smaller, but we have never observed 
the finger cut into more than two parts in such cases. Thus it seems that the wavelength 
is more likely to be controlled by the boundary conditions (the wall) and that the 
analysis for an infinite medium cannot give quantitatively reliable results in this case. 
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FIGURE 10. Finger splitting in a horizontal, 4 mm tube with the displacing fluid lighter than that 
displaced. The sketches indicate the cross-section of the instability a t  various locations along its 
length. 

In order to interpret our results further note, following Taylor (1961), that there are 
two possible flow states: the first occurs when the velocity of the nose, y ,  is smaller 
than the velocity V,,,,., where V,,,,. is the velocity of the Poiseuille flow in the centre of 
the tube ahead of the finger; and the second when is larger than V,,,,. These two 
flows correspond respectively to nz < 0.5 and m > 0.5. The transition from one state to 
the other occurs at a value of Pe that depends on A t  and F. When m is larger than 0.5, 
the flow field is as shown in figure 11 ( a )  (see pp. 48 and 49), in a reference frame moving 
with the finger. There is only one stagnation point, at the tip of the nose. When m is 
smaller than 0.5, Taylor (1961) proposed two interpretations for the steady streamlines: 
one with one stagnation point on the tip of the nose and a stagnation ring on the finger 
surface (figure 1 1 h) ,  and another with two stagnation points on the axis. We have found 
in our experiments with miscible displacements that when m < 0.5 a very thin finger, or 
‘spike,’ emerged from the tip of the principal finger and moved through the displaced 
fluid. In the sequence of photographs of figure 1 1  (h) ,  we show the growth of this 
‘spike’ starting from the tip of the main finger. I t  could become quite long (a few cm) 
provided nz < 0.5. The absence of a large surface tension in the present experiment 
explains why the finger can form in this case and not in the immiscible case. In the latter 
the large surface tension does not allow such a small radius of curvature at  the nose 
of the ‘spike’ in the strain field generated by the tip motion. Its existence can now be 
attributed to the recirculating flow ahead the finger, as shown in figure 11 (b)  for the 
equivalent steady situation and in figure 1 1  (c) for an unsteady flow with a growing 
spike. On the other hand it is not compatible with the other proposition presented by 
Taylor. This observation suggests that form < 0.5 the solution with a stagnation ring, 
off the axis of symmetry, is the correct one not only in the miscible case, but also in the 
immiscible case since the miscibility only changes the streamlines near the axis, with a 
growing spike in the first case and a stagnation point in the second. Note that the 
growth of this ‘needle’ was not taken into account in the measurement of the timed 
change in the length of the finger used to calculate 4. This in turn means that the small 
amount of fluid represented by the growth of the needle was not taken into account 
when calculating y .  From photographic sequences like figure 1 1  (b)  we estimate that 
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FIGURE 12. Partially enhanced photographs of the finger tip, indicating the reversed flow that exists 
at the nose, under some circumstances when m < 0.5. The line drawing is from Part 2 for a situation 
similar to that shown in the lower photograph. 

the increase in 'needle' volume, over a given time interval, is less than 3 %  of the 
increase in volume of the primary finger. 

In this same flow regime we have observed, also, recirculation in the nose of the 
finger. Figure 12 shows photographs where this can be seen. This deformation, which 
has the form of a 'plume' is quite similar to what has been obtained in Part 2 in their 
numerical simulation, which is also reproduced in figure 12 (figure 16 of Part 2). This 
recirculation is one reason why the interface at the nose could be very thin, and not 
diffuse, even for low Pe( z 1000). At these low values of Pe diffusion that occurs on 
the sides of the finger may perturb the 'purity' of the mixture coming into the nose. To 
estimate this effect note that diffusion mixes the fluids over a thickness 6, z (vL/ VmaX)li2, 
where L is a representative length over which we assume the contamination of the 
initial mixture becomes important. Assuming that this contamination takes place when 
6, NN d/2 leads to the requirement that L/d z Pe/4 .  That is the length of the finger that 
can usefully be used in any one experiment, before contamination of the intruding fluid 
becomes a critical issue, is limited at the lower tip velocities, being about a quarter of 
the length of the tube in the most extreme case, i.e. at the lowest Pe "N 100 and in a 
1 mm inner diameter tube. 

For very large Pe, m tends to an asymptotic value mmas that depends only on the 
Atwood number, and not on the diameter of the tube nor on its orientation. Figure 13 
shows this dependence. We observe that for At < 0.5, mmaz NN 0.5. For higher At ,  mmax 
increases to a value of 0.61. Unfortunately, we could not find any extensive 
experimental results for the immiscible case in order to compare with these asymptotic 
values, except for the one case (Taylor 1961) discussed later. Nevertheless, this 
evolution is very similar to that obtained in the numerical simulations in Part 2 and 
which are presented on the same figure. Templeton (1953) and Goldsmith & Mason 
(1963) studied the immiscible liquid-liquid displacement of bubbles in small tubes, and 
observed that the thickness of the residual film increased as the Atwood number 
decreased for a given Cu, which is in an opposite sense to that found in the miscible 
case. This is a surprising observation since we would expect the same asymptotic value 
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FIGURE 14. A comparison between nz I S .  PP,, for miscible flow in a I mm diameter tube and Fzz  0 
(diamond symbols) and Taylor’s (1961) result from rn z1.s. Cu for immiscible fluids (curve), both for 
A t  = 1 .  The abscissae have been scaled to bring about a coincidence between the two sets of  results 
in their range of overlap. 

of mmoL in both cases based on the following argument. Infinite capillary number can 
be interpreted as immiscible flow with zero surface tension. In the same way, infinite 
Peclet number can be interpreted as a miscible flow with zero diffusion. In other words, 
it is possible to formally identify the interface between two immiscible fluids without 
surface tension with that between two miscible fluids without molecular diffusion. In 
that sense, the asymptotic value mmws should be the same in both the immiscible and 
miscible cases, although, as pointed out by a referee, it is possible that the limiting cases 
may. in fact, be singular. However, it is not clear why the quoted studies found different 
results from the present experiments; this is a problem to be left for a future study. 

Finally, Taylor’s (1961) paper is the only one from which we can get an extensive 
immiscible curve of ni versus Ca. Thus, for A t  z 1,  the immiscible and miscible data 
can be compared in order to determine, formally, an ‘effective’ surface tension, ce!Jf/, 
between two miscible fluids such as water and glycerine. The maximum value of n7 in 
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Taylor’s experiment was mmaz = 0.56 while we find mmaz = 0.61 in the miscible case. 
This difference can be rationalized by the observation that Taylor, apparently, did not 
reach the asymptotic value but stopped at too small a capillary number. In later 
experiments Cox (1962) found mmaz = 0.60, a value that is very close to our result. 
Figure 14 shows the two curves (miscible and immiscible) superimposed on the same 
graph. Here Pet = V, d / D  = 8000 is equivalent to Ca = pV,/cr = 3, so that we obtain 
a value of the ‘effective’ surface tension of aeff = 2670 p D / d  = 0.43 dyn cm-l, for the 
fluids used here in a 1 mm diameter tube. As a comparison, this value is about 0.7 % 
of the surface tension between glycerine and air (i.e. a,2y-air z 62 dyn cm-l), and is of 
the same order as the value of 0.58 dyn cm-l found by Petitjeans (1996), for the 
water-glycerine system, using the ‘static’ ‘ rotating-drop’ method. 

4. Conclusions 
This experimental work is complemented by a numerical study by Chen & Meiburg 

(1 996) presented as Part 2 of this submission. As a result of the very small values of D, 
that exist in the fluid system used here, there is only one regime where comparisons can 
usefully be made. This corresponds to high Pe (> lo’). The results are in very good 
agreement with each other in some respects and not in others. In particular, the 
evolution of the asymptotic value of mmaz for high Pe as a function of the Atwood 
number is found to be very similar in both studies. The interface remains very sharp 
in both cases, mainly because of the convective motion that occurs on both sides of the 
nose of the finger and which brings fresh fluid into that region (see Part 2, 94.1.1). 
However, the magnitude of the transition Peclet number to this asymptotic state is 
quite different in the two studies. Also the variation of m with smaller values of 
Pe is not the same in the experiments as in the calculations. These differences must 
be due, to a large extent, to the assumption used in Part 2 of a constant diffusion 
coefficient, while in the experiment DL(Cs) varies by a factor of order 26.5, for the 
larger values of A t  (see figure 5). Also the variation of viscosity with concentration in 
the present experimental system is best represented by a double exponential function 
of concentration above C, z 20 % and a single exponential below, while the numerical 
calculations use a single exponential over the whole range of C,. It is clear that both 
diffusion of species and vorticity, acting at the tip of the finger, are absolutely critical 
in determining the shape of the nose and hence the overall shape of the finger. At this 
location, small differences in the variation of the two diffusion coefficients with 
concentration almost certainly have important effects, with that of species diffusion 
probably the most critical. 

For values of Pe < 1000, where in Part 2 the existence of a regime of Taylor 
dispersion is predicted, it has not been possible to obtain any meaningful experimental 
results. This was due, mainly, to the inability to define accurately an interface between 
the two fluids. This inability suggests that, in fact, the diffusion-dominated regime had 
been reached, thus confirming the suggestion in Part 2, not by quantitative 
measurement but by a qualitative observation. 

The important effect that the gravitational force may have, even at moderate to high 
values of Pe, has been revealed. Nevertheless, it has been found possible to interpolate 
the amount of fluid remaining on the wall, m, as a function of the PCclet number, to 
the zero-gravity case, for a vertical tube. As noted previously the numerical simulations 
give smaller values of m at high At (At = 0.985, figure 7a) ,  although the agreement is 
better for lower values ( A t  = 0.79, figure 7c). An examination of figures 7(a) and 7(b)  
makes it clear that the curves have not reached the asymptotic of m at Pe = 1600, for 
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these values of At  and for this experimental system, that encompasses a large variation 
of D,> within the interface region. On the other hand the calculations in Part 2, that use 
a constant D,, have reached their final value. Closer agreement for At = 0.79 may 
actually be fortuitous since the experimental data are not extensive enough to define 
the curve for F = 0 accurately (note that the curve is shown dashed in figure 7 c  to 
denote this fact). As a result one should expect the values to coincide only at larger 
experimental values of Pe. 

It has been possible to obtain an ‘effective’ surface tension between water and 
glycerine by comparing the immiscible (Taylor 1961) and the present, miscible 
experiments for A t  = 1. The value obtained, reff = 0.43 dyn cm-l for a 1 mm 
diameter tube, is of the same order of the value of 0.58 dyne cm-’ found by Petitjeans 
(1996) in a direct measurement using the ‘ rotating-drop’ method. Both are significantly 
larger than values (0( lop3) dyne cm-’) calculated by Davis (1 988), for example, for a 
case where D ,  was a constant. 
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